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AbStncL We present a method of calculation of the local i t ion  energy of the hole in the 
crystal in which the density of states in the valence band has comparable contributions 
from both cation and anion slates. The method is applied to the study of hole self- 
trapping in AgCI. Ihe quantum-chemical simulations of the different hole structures 
wealed that the &type form of hole self-trapping in AgCl is unstable. ?he calculated 
self-trapping energy for the hole on one silver site is equal to -0.1 eV. 

1. Introduction 

Although the possibility of small electron polaron formation in a perfect deformable 
lattice was predicted by Landau almost 60 years ago [l], theoretical studies of small 
polarons in different crystals still cause interest [2,3]. Since then the words ‘self- 
trapped state’, ‘small radius polaron’ and ‘strongly localized state’ in the perfect lattice 
have become close synonyms. As has been noted by ’lbyaawa in his pioneering paper 
[4] the word ‘self-trapping’ or ‘localization’ should not be taken sn literally, and the 
problem of the possibility of self-trapping should be replaced by a discussion of the 
magnitude of the effective mass of the self-trapping quasi-particle interacting and 
the lattice distortion. Among various theoretical approaches [5,6] developed for 
an understanding of this phenomenon, -a static quantum-chemical approach has the 
advantage of being specific and applicable to particular crystals. It has recently been 
used in KCI [7], MgO [8] and AI,O, [9] and has provided satisfactory microscopic 
models of the self-trapped holes in these crystals. In this paper we present its 
further development. In particular, we will focus on the method of calculation of 
the localization energy of the hole in the crystal in which the density of states in the 
valence band has comparable contributions from both cation and anion states. The 
method is applied to the study of hole self-trapping in AgCl. 

The structure of the self-trapped hole in AgCl has been studied using various 
experimental techniques and reliably established [10-12]. However, the question 
still remains as to why the holes in the alkali halides and AgCl have such different 
structures. Both crystals have the same type of crystalline structure, but different 
valence band electronic structure. Is the latter the main reason that in the alkali 
halides the holes are self-trapped in the anion sublattice and form the X; molecular 
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ions occupying two anion sites (V, centres [14]) whereas in AgCl the hole is localized 
on one cation? Tb address this question we performed quantum-chemical simulations 
of the different hole structures which revealed that the V,-type form of hole self- 
trapping in AgCl is indeed unstable. 

E N Heifers and A L Shluger 

2. Method of calculation 

2.1. Sraric approach 

The key characteristic, which is usually calculated using the static approach is the self- 
trapping energy ( E J  [4]. It may be considered as the energy which is required in 
order to produce the self-trapped state from the lowest delocalized (band) state of the 
quasi-particle. (Henceforth the hole will be used as the example of a quasi-particle, 
although the same approach with minor changes may be applied to electrons and 
excitons). If the calculated value of E,, is negative the localized state is considered 
to be stable with respect to the band of the delocalized states. If E,, is found to 
be positive the localized state is certainly unstable and the hole can exist only in the 
delocalized state. As was noted in [7,8] the kinetic behaviour of the localized hole 
is determined not only by the value of E,, but also by the character (adiabatichon- 
adiabatic) and the barriers for its diffusion between different localized states 

Within the static approach it is convenient to divide E,, into two terms: the 
localization energy, E,,, and the relaxation energy, E,,. E,, may be considered as 
the energy which is required in order to localize the hole on one or several lattice 
sites where the ions are in their sites and only the electrons follow. the presence of 
the hole, whereas the E,, is the energy gain due to the lattice relaxation from this 
state. The self-trapping energy is hence the difference: 

In order to clarify this point let us present the Hamiltonian of the crystal with 
the hole as a~ sum of three terms: 

where He, is the Hamiltonian of the electrons when the nuclei are k e d  in their 
site positions, HVibr is the Hamiltonian of the lattice vibrations and He-vibr describes 
the interaction between the electrons and the lattice vibrations. In this case the 
self-trapping energy according to our definition is equal to: 

where IQ,,) and I Q d c l )  denote the wavefunctions of the self-trapped and the lowest 
delocalized state, respectively. If we use the Landau-Pekar approximation in which 
the total wavefunction of the system is treated as a simple product of the electronic 
1 ~ )  and vibrational Ix) wavefunctions: 
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the selfhapping energy may be presented in the form 

Hence E,, and EWI are equal to the following differences of matrix elements: 

El, = (‘PstlHeebst) - ( ‘ P d e l ~ H e ~ ~ d d )  

E ~ I  = (@dedHvibr f He-vibrl@dd) - (@stlHvlbr f He-vibrl@st), 

In order to use a standard stationary quantum-chemical technique an artificial 
intermediate state, I Q i ) ,  should be introduced to provide a common reference point 
for the calculation of the E,, and E,,. Therfore the actual approach, which is often 
used in order to find a stable configuration of the polaron, is somewhat different. 
It assumes that the polaron may be localized within the crystal area which coincides 
with some finite atomic cluster. Plausible models of the localized polaron are then 
simulated making use of the Mott-Littleton or some quantum-chemical technique. 
These models may be chosen on the basis of experimental data and preliminary 
assumptions. If the minimization of the total energy of the system predicts a stable 
configuration of the polaron with respect to  the variation of positions of the ions 
in the cluster, the relaxation and localization energies are then calculated for this 
configuration. 

For these purposes one needs to construct in the perfect lattice qualitatively the 
same electronic state I@,.) as was obtained for the localized configuration, and to  
assume the equivalence of the magnitudes of the electronic polarization produced 
by this state and the completely delocalized hole state. The validity of the latter 
approximation was analysed by Fowler in [24]. In this case, using the above procedure, 
the self-trapping energy may be written in the form: 

The second term is equal to zero because of our assumption that in both delocalized 
and intermediate states the lattice ions are located in their sites. Hence the 
localization and relaxation energies correspond to the following combinations of the 
matrix elements: 

having a quite transparent physical sense. 
In the majority of the approximate microscopic approaches employed so far 

in the theory of self-trapping and in the calculations of the structure of the self- 
trapped particles in particular systems, the electron-phonon coupling is treated in 
the linear approximation [4,5]. The electronic Hamiltonian is often presented in 
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the tight-binding approximation, taking into account only the largest matrix elements 
of the Hamiltonian between the nearest sites. Since all these matrix elements are 
equivalent, the density of states of the valence band has a symmetric form. As a 
consequence of the latter assumption, the localization energy of the particle on one 
lattice site appears to be equal to the half-width of the band of its delocalized states. 
The structure of the band of the delocalized states may be correctly described in 
this approximation if the basis of s atomic orbitals centred on the sites provides 
an appropriate representation of the hole states. However in many clystals the 
wavefunction of the hole has p or d orbital characteristics. In these cases the simple 
approach described above leads to the substantial overestimation of the localization 
energy [7,8]. 

Since the localization and relaxation energies are usually similar and their 
difference is much smaller than the width of the band of the delocalized states, 
the accuracy of the calculation of E,, is a crucial point in the estimation of the 
Es,. As has been shown in 181, accounting for the angular dependence of the matrix 
elements of the tight-binding Hamiltonian improves the accuracy of the calculation of 
E,-. Another problem concerns the details of the electronic structure of the crystal 
under study. In particular, if the hole is created in the valence band, the nature 
and characteristics of the density of states in the band play an important role in 
the self-trapping process. The situation becomes particularly complicated when the 
valence band is a mixture of the states originating from two or more sublattices. This 
takes place in AgCl, alumina and other crystals, where the self-trapping of holes is 
the topic of discussion [3,9-121. 

2.2. Quantum-chemical method 
The important peculiarity of the method suggested for the study of self-trapped-holes 
in [7,8] is that both the localization and relaxation energies of the hole are calculated 
using the same quantum-chemical technique and set of parameters. This is achieved 
employing the CLUSTER computer code which combines both the possibility to make 
calculations of charged defects within the embedded molecular cluster (EMC) model 
[15] and to study the band structure of perfect crystals using the periodic large unit cell 
method [161. It is based on the semi-empirical version of the unrestricted Har t r ee  
Fock-Roothaan method implementing the approximation of intermediate neglect of 
differential overlap (INW) [I71 which allows us to obtain with reasonable accuracy the 
electronic structure of quantum clusters and LUC containing several tens of ions. The 
latter is important in order to study different possible configurations of the localized 
hole. The polarization of the crystal is treated in the polarizable ion approximation 

The CLUSTER code is described in a previous paper [19]. The basis Set of present 
calculations includes 3s and 3p Slater-type atomic orbitals (AOs) on chlorine ions and 
4d, 5s and 5p AOS on silver ions. The INDO parameters were optimized with reference 
to a series of molecular species including all the different bonding possibilities that 
will be important in our study of hole self-trapping (Ag2, A&, Cl;, A@), the 
crystal lattice constant and the electronic structure of the valence band. We c a h l a t e  
the electronic structure and the lattice constant of the bulk material within the LUC 
method applying the periodic boundary conditions to the cell [Ag32C132]. This a l b a  
us to effectively take into account eight non-equivalent k-points of the Brillouin zone 
(BZ) [16]. The lattice constant finally determined from the LUC calculations after 
the optimization of the parameters was 5.18 au (the experimental value is 5.25 au). 

E N Heifers and A L Shluger 

[181. 
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The valence band has an electronic structure close to that calculated using the ab 
inilio band structure technique 1201. In the projected density of states in the valence 
band, the most significant contributions are from the 4d states of Ag ions and the 
3p states of CI ions. The top of the band is located in the L point of the BZ and 
is mainly determined by the d states of the Ag ion. The oneelectronic wavefunction 
of the state corresponding to the r point of the BZ is mainly determined by the 
3p s ta te  of the CI ion. The electronic energy of this point is 2.1 eV lower than 
that of the L point, which is in good agreement with the experimental value of 
1.9 eV [lo]. Lowdin population analysis was used to calculate the effective ion 
charges; their modulus for silver and chlorine ions in the perfect lattice is 0.69e 
(e is the electron charge) in agreement with the experimental estimation 0.66-0.69 e 

The lattice outside the cluster is constructed from non-point polarizable ions 
carrying the same basis of AOS as ions inside the cluster. The Lowdin populations 
of these AOS are frozen to those AO populations of the perfect lattice. Only the 
Coulomb and chargedipole interactions between the cluster ions and remaining 
crystal are included in the calculation of elements of the Fock matrix. The Coulomb 
interaction between ions inside and outside the cluster is calculated explicitly as 
between quantum-mechanical ions, although the angular dependence of the AOS 
in the Coulomb integrals is neglected according to the INDO approximation. The 
potential of the lattice of non-point spherical ions is summed to infinity using the 
Ewald method 1191. 

'Ib simulate the self-trapping of a hole the polarization of the remaining crystal, 
not included in the quantum cluster, is accounted for in a self-consistent manner 
[U,  181. The potential of the polarization field generated as a consequence of the 
response of the  polarizable lattice to the hole is incorporated directly into the Fock 
matrix. It is recalculated after every few steps of the UHF self-consistency procedure 
until the consistency is finally achieved. 

[211. 

3. Hole self-tmpping in AgCl 

In order to find a possible stable configuration of the bole we use the following 
approach. First we suppose that the hole may be localized within the crystal 
area which coincides with the molecular cluster. The largest cluster used in these 
calculations is comprised of 48 ions [Agz4Clz4]. According to the experimental data 
regarding the hole self-trapping in the crystals with close structure, like alkali halides, 
cubic oxides or alkali earth fluorides and to the results of theoretical calculations 
for these crystals [2,7,8,14,22], one can assume three plausible models for the self- 
trapped hole in AgCl: the one-centre and V,-like localization in the anion sublattice 
and the one-centre localization in the cation sublattice. 

First we simulated the V,-like configuration of the hole using the molecular 
cluster [Ag2,,CIz4]. By the symmetrical displacement of two central chlorine ions from 
their sites towards each other it is possible to localize the hole predominantly on 
these ions. 'Ib minimize the total energy of the system keeping the D,, symmetry 
of the defect, it appears that at the energy minimum the hole is only slightly 
localized on two displaced chlorines. In fact about 60% of the spin density is 
localized on the two nearest Ag ions which are slightly displaced from their sites 
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(see figure l(o)). The analysis of this configuration has shown that this antibonding 
state is located about 0.25 e V  higher than the bonding state of the same symmetry 
(see figure l(b)). Hence in this model the hole prefers to localize in the state 
determined by the silver atomic orbitals. The further minimiition of the system’s 
total energy without additional symmetry restrictions indicates that the two-centre 
hole localization on silver ions is unstable and much lower energy corresponds to 
the one-centre state depicted in figure l(c). If we start from the state corresponding 
to the localization of the hole upon one chlorine ion, which may be prepared by a 
strong symmetrical displacement of the six nearest cations outwards, by minimizing 
the total energy we end up with the same one-centre state localized on one silver 
ion. 

E N Heifers and A L Shluger 

a b 
t 

.CI 
oAs I x - >  l X t >  

C 
Figure 1. Molecular orbitals of the self-lrapped hole: (a) the antibonding IwoCentre 
hole slate; ( b )  the bonding hole state at the Same ionic displacements as (a), which is 
analogous to the hole wavefunction in the VK centre; (e) the ‘onesentre’ hole state on 
the silver ion. 

Further analysis of the one-centre hole configuration on the silver ion was 
performed using the molecular cluster [Agl,CII,]. It has revealed that about 67% 
of the hole is localized on the dzZwyt atomic orbital of the central silver ion. The 
remaining 33% of the spin density of the hole is delocalized by the 3p,,, orbitals of 
the four chlorine ions located in the Ozy plane of the cluster. The displacements of 
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the nearest ions surrounding the central silver ion are summarized in table 1. The 
symmetry of the centre is in fact D,, because the four nearest anions in the Ozy 
plane are attracted to the hole a bit more strongly than those located by the z-axis. 
This is a consequence of the Jahn-’Mer interaction of the hole with E vibrations Of 
the nearest anions. The symmetry of the hole predicted by our cakul&on coincides 
with that observed in the ESR experiment [12]. Therefore the one-centre state on the 
silver ion may be considered as a good candidate for the model of the self-trapped 
hole in AgCl. However, a more confident conclusion may be made only after a 
calculation of the self-trapping energy. 

Table 1. The displacements of two nearest-neighbour spherm of ions of the self-trapped 
hole in AgCl (in uniu of internuclear dislance). 

~~~ 

Displacements 
Ions lypEs 

of sits z Y I 

Ag 1 0 0 0.050 0.wO 0.W 
Ag 0 0 1  0.W 0.wO 0.025 
CI 1 1 0 0.025 0.025 0.m 
CI 1 0 1  0.015 0.W 0.025 

In order to calculate the localization energy of the hole on one silver ion let us 
present its Hamiltonian in the tight-binding approximation 

H h  = - x E p a i p p a L p u  - ~ E d p a L d p a L d ,  + 
L*P L.P 

- V(L - L’, A,  o ) a i A a L l a  
L,L‘ h,rr 

Here p are different symmetry projections of 3p and 4d orbitals of chlorine and 
silver, respectively; - E ~  and - E ~ ,  are the energies of the hole localized on the 
chlorine 3p orbitals or the silver 4d orbitals; V denotes the non-diagonal matrix 
elements, where L and L‘ are the vecton of the direct lattice and A, U refer to all 
the symmetry projections of chlorine 3p orbitals and silver 4d orbitals; A characterizes 
the splitting of the silver 4d states in the crystalline field. According to the results 
of our calculations, the wavefunction of the localized hole may be presented in the 
form of the linear combination 

liph) = uIzZ - Y2) - ( P / 2 ) ( l z - )  - I.+) + lY+) - Iv-)) (9) 

where the lzz - yz) denotes the d,2yy2 atomic orbital of the silver ion and the (A+) 
are the 3p orbitals of the chlorine ions in the Ozy plane, f refers to the relative 
positions of the chlorine ions with respect to the central silver ion (See figure l ( c ) ) ,  
and a, p are the real coefficients, which are determined from the Hartree-Fock 
calculation of the hole. According to our definition (7 )  we have to calculate the 
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energy difference between the lowest delocalized state and the intermediate state 
corresponding to the hole localized in the perfect lattice with the wavefunction (9). 
The latter is equal to 

E N Heifers and A L Shluger 

' bo  usual approximations were employed in order to calculate the energy of 
the delocalized state. Firstly, in our calculations the band of free holes coincides 
with the valence band taken with the opposite sign [U], i.e. the bottom of the 
hole band corresponds to the top of the valence band. Secondly, we assume the 
equivalence of magnitudes of the electronic polarization produced by the delocalized 
and localized holes [24]. Using these approximations, the matrix elements of the 
hole Hamiltonian in both delocalized and intermediate states may be derived from 
the matrix elements of the Fock operator in the site representation obtained at the 
last iteration of the self-consistency procedure of the band structure calculation of 
the perfect crystal. This calculation was performed using the Luc method and the 
cell [Ag3,C13,]. The localization energy calculated in this manner is equal to 0.8 
e\! 

In order to find the relaxation energy, the total energy of the molecular cluster 
simulating the perfect lattice was calculated for the electronic density distribution 
corresponding to the hole wavefunction (9). Only the electronic part of the lattice 
polarization by the hole has been taken into account since, in the intermediate state, 
all ions are assumed to be in their sites. The value of E,, is approximately equal to 
the difference between this energy and the energy of the completely relaxed state. In 
our calculation this value is equal to 0.9 eV. 

According to (1) the self-trapping energy is equal 0.80.9 = -0.1 e\! The negative 
value of the Es, supports the conclusion that the hole in AgCl may be self-trapped 
on one silver ion. The magnitude of the E%, is close to the experimentally obtained 
activation energy of the thermo-activated ionization of the self-trapped hole in AgCl 
which is equal to 0.12 eV [25]. 

4. Discussion 

The results of these calculations agree with the experimental obselvation that the 
hole in AgCl is localized on the silver ion. They also exclude the possibility of hole 
localization in the chlorine sublattice in the bulk of the perfect crystal. The latter 
result is not absolutely evident despite the fact that the top of the valence band 
in AgCl is determined by the d states of silver ions. The estimation of the hole 
(V, centre) self-trapping energy in KCI [7] gives the value of -1.7 eV which is 
close to the splitting (1.9 eV) between L (silver-like) and I? (chlorine-like) points in 
the valence band of AgCI. Therefore one could expect that hole self-trapping on 
chlorines is due to a delicate balance of different contributions to the self-trapping 
energy. However, the fact that the silver states have higher energy causes a hole 
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density redistribution from the chlorine ions to silver. Consequently the chemical 
bond between two chlorines sharing the hole does not form, whereas the lattice 
polarization cannot prevent the hole transfer onto silver ions. 

Finally we should note that the alternative estimate of the localization energy 
could be made as a half-width of the silver subband in the valence band of AgCI. In 
order to compare with the EmI obtained in our calculations we should get the value 
Of E,, from the band structure calculation made by the same quantum-chemical 
method. In our L U c  calculations the width of the silver subband is found to be 
equal to 2.1 eV Therefore the value of E,, may be estimated as 1.05 eV. Thus 
the E,, obtained in this manner is 1.05-0.9 = 0.25 eV and hence, according to this 
estimation, the holes cannot be self-trapped in AgCI. This paradoxical result suppor5 
the conclusion made in previous calculations [7,8] that the real electronic structure 
of the valence band has to be taken into account in the calculations of the hole 
localization energy. 
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