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Abstract. We present a method of calculation of the localization energy of the hole in the
crystal in which the density of states in the valence band has comparable contributions
from both cation and anion states. The method is applied to the study of hole self-
trapping in AgCl. The quantum-chemical simulations of the different hole structures
revealed that the Vi -type form of hole self-trapping in AgCl is unstable. The calculated
self-trapping energy for the hele on one silver site is equal to —0.1 eV.

1. Introeduction

Although the possibility of small electron polaron formation in a perfect deformable
lattice was predicted by Landau almost 60 years ago [1], theoretical studies of small
polarons in different crystals still cause interest [2,3]. Since then the words ‘self-
trapped state’, ‘small radius polaron’ and ‘strongly localized state’ in the perfect lattice
have become close synonyms. As has been noted by Toyozawa in his pioneering paper
[4] the word ‘self-trapping’ or ‘localization’ should not be taken so literally, and the
problem of the possibility of self-trapping should be replaced by a discussion of the
magnitude of the effective mass of the self-trapping quasi-particle interacting and
the lattice distortion. Among various theoretical approaches [5,6] developed for
an understanding of this phenomenon,-a static quantum-chemical approach has the
advantage of being specific and applicable to particular crystals. It has recently been
used in KCI [7], MgO [8] and Al,O, [9] and has provided satisfactory microscopic
models of the self-trapped holes in these crystals. In this paper we present its
further development. In particular, we will focus on the method of calculation of
" the localization energy of the hole in the crystal in which the density of states in the
valence band has comparable contributions from both cation and anion states. The
method is applied to the study of hole self-trapping in AgCL

The structure of the self-trapped hole in AgCl has been studied using various
experimental techniques and reliably established [10-12]. However, the question
still remains as to why the holes in the alkali halides and AgCl have such different
structures. Both crystals have the same type of crystalline structure, but different
valence band electronic structure. Is the latter the main reason that in the alkali
halides the holes are self-trapped in the anion sublattice and form the X molecular
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ions occupying two anion sites (V. centres [14]) whereas in AgCi the hole is localized
on one cation? To address this question we performed quantum-chemical simulations
of the different hole structures which revealed that the Vg-type form of hole self-
trapping in AgCl is indeed unstable.

2. Method of calculation

2.1. Static approach

The key characteristic, which is usually calculated using the static approach is the self-
trapping energy (E;) [4]. It may be considered as the energy which is required in
order to produce the self-trapped state from the lowest delocalized (band) state of the
quasi-particle. (Henceforth the hole will be used as the example of a quasi-particle,
although the same approach with minor changes may be applied to electrons and
excitons). If the calculated value of E, is negative the localized state is considered
to be stable with respect to the band of the delocalized states. If E is found to
be positive the localized state is certainly unstable and the hole can exist only in the
delocalized state. As was noted in [7,8] the kinetic behaviour of the localized hole
is determined not only by the value of E, but also by the character (adiabatic/non-
adiabatic) and the barriers for its diffusion between different localized states.

Within the static approach it is convenient to divide E into two terms: the
localization energy, E, ., and the relaxation energy, E,. E, . may be considered as
the energy which is required in order to localize the hole on one or several lattice
sites where the ions are in their sites and only the electrons follow the presence of
the hole, whereas the E,, is the energy gain due to the lattice relaxation from this
state. The seif-trapping energy is hence the difference:

Est = Eloc - Erel' 7 (1)

In order to clarify this point let us present the Hamiltonian of the crystal with
the hole as a.sum of three terms:

H=H,+ Hg, + H._;, - (2

where H is the Hamiltonian of the electrons when the nuclej are fixed in their
site positions, H, is the Hamiltonian of the lattice vibrations and H,_,;, describes
the interaction between the electrons and the lattice vibrations. In this case the
self-trapping energy according to our definition is equal to:

E

st — (q)stlhrlq)sl) - ({DdellHl‘Ddel) (3)
where |® .} and |$,,) denote the wavefunctions of the self-trapped and the lowest
delocalized state, respectively. If we use the Landau-Pekar approximation in which
the total wavefunction of the system is treated as a simple product of the electronic
|) and vibrational [x) wavefunctions:

|®) = [@)|x) 4)
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the self-trapping energy may be presented in the form

Est - ((‘PstlHeeI‘psl) - ({pdellHee"Pdel))
= U Pgal Huipe + He_yiprl Par)
- (d)st’Hvibr + He—vibrlq)st))' ) (5)

Hence E,_ and E,,; are equal to the following differences of matrix elements:

Eloc = (‘I"slIHee"psl) - ((PdellHeel‘Pdel)
Erel = ((I)delleibr + Hc-vibrF(pdel) - (qjstIHvibr + He-ﬂbrlq)st)'

In order to use a standard stationary quantum-chemical technique an artificial
intermediate state, |®,), should be introduced to provide a common reference point
for the calculation of the E, and E ;. Therfore the actual approach, which is often
used in order to find a stable configuration of the polaron, is somewhat different.
It assumes that the polaron may be localized within the crystal area which coincides
with some finite atomic cluster. Plausible models of the localized polaron are then
simulated making use of the Mott-Littleton or some quantum-chemical technique.
These models may be chosen on the basis of experimental data and preliminary
assumptions. If the minimization of the total energy of the system predicts a stable
configuration of the polaron with respect to the variation of positions of the ions
in the cluster, the relaxation and localization energies are then calculated for this
configuration. :

For these purposes one needs to construct in the perfect lattice qualitatively the
same electronic state |®;) as was obtained for the localized configuration, and to
assume the equivalence of the magnitudes of the electronic polarization produced
by this state and the completely delocalized hole state. The validity of the latter
approximation was analysed by Fowler in [24]. In this case, using the above procedure,
the self-trapping energy may be written in the form:

Ey = (@i Heel i} = {Paetl HeelPae))
+ (| Hyipr + He_vine[23)
— (D gl Hune + Heovipel Paal)
— (P H[D;) — (Pl H[Do)). , (6)

The second term is equal to zero because of our assumption that in both delocalized
and intermediate states the lattice ions are located in their sites. Hence the
localization and relaxation energies correspond to the following combinations of the
matrix elements:

Elpe = (e;|Hoelwi) = {egerl H . ol @4a)
E @ HI®,) — (| H{D,) N

having a quite transparent physical sense.

In the majority of the approximate microscopic approaches employed so far
in the theory of self-trapping and in the calculations of the structure of the self-
trapped particles in particular systems, the electron-phonon coupling is treated in
the linear approximation [4,5]. The electronic Hamiltonian i often presented in
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the tight-binding approximation, taking into account only the largest matrix elements
of the Hamiltonian between the nearest sites. Since all these matrix elements are
equivalent, the density of states of the valence band has a symmetric form. As a
consequence of the latter assumption, the localization energy of the particle on one
lattice site appears to be equal to the half-width of the band of its delocalized states.
The structure of the band of the delocalized states may be correctly described in
this approximation if the basis of s atomic orbitals centred on the sites provides
an appropriate representation of the hole states. However in many crystals the
wavefunction of the hole has p or d orbital characteristics. In these cases the simple
approach described above leads to the substantial overestimation of the localization
cnergy [7,8].

Since the localization and relaxation energies are usually similar and their
difference is much smaller than the width of the band of the delocalized states,
the accuracy of the calculation of E,. is a crucial point in the estimation of the
E,,. As has been shown in [8], accounting for the anguiar dependence of the matrix
clements of the tight-binding Hamiltonian improves the accuracy of the calculation of
E,,.- Another problem concerns the details of the electronic structure of the crystal
under study. In particular, if the hole is created in the valence band, the nature
and characteristics of the density of states in the band play an important role in
the self-trapping process. The situation becomes particularly complicated when the
valence band is a mixture of the states originating from two or more sublattices. This
takes place in AgCl, alumina and other crystals, where the self-trapping of holes is
the topic of discussion [3,9-12].

2.2. Quantum-chemical method

The important peculiarity of the method suggested for the study of self-trapped-holes
in [7,8] is that both the localization and relaxation energies of the hole are calculated
using the same quantum-chemical technique and set of parameters. This is achieved
employing the CLUSTER computer code which combines both the. possibility to make
calculations of charged defects within the embedded molecular cluster (EMC) model
[15] and to study the band structure of perfect crystals using the periodic large unit ceil
method {16]. It is based on the semi-empirical version of the unrestricted Hartree-
Fock-Roothaan method implementing the approximation of intermediate neglect of
differential overlap (INDO) {17] which allows us to obtain with reasonable accuracy the
electronic structure of quantum clusters and LUC containing several tens of ions. The
latter is important in order to study different possible configurations of the localized
hiole. The polarization of the crystal is treated in the polarizable jon approximation
[18].

The CLUSTER code is described in a previous paper [19]. The basis set of present
calculations includes 3s and 3p Slater-type atomic orbitals (A0s) on chlorine ions and
4d, 5s and 5p AOs on silver ions. The INDO parameters were optimized with reference
to a series of molecular species including all the different bonding possibilities that
will be important in our study of hole self-trapping (Ag,, Agy, Cl;, AgCl), the
crystal lattice constant and the electronic structure of the valence band. We calculate
the electronic structure and the lattice constant of the bulk material within the LUC
method applying the periodic boundary conditions to the cell [Ag;,Cly,]. This allows
us to effectively take into account eight non-equivalent k-points of the Brillouin zone
(Bz) [16]. The lattice constant finally determined from the LUC calculations after
the optimization of the parameters was 5.18 au (the experimental value is 5.25 au).
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The valence band has an electronic structure close to that calculated using the ab
initio band structure technique [20]. In the projected density of states in the valence
band, the most significant contributions are from the 4d states of Ag ions and the
3p states of Cl jons. The top of the band is located in the L point of the Bz and
is mainly determined by the d states of the Ag jon. The one-electronic wavefunction
of the state corresponding to the I' point of the BZ is mainly determined by the
3p states of the Cl ion. The electronic energy of this point is 2.1 eV lower than
that of the L point, which is in good agreement with the experimental value of
1.9 ¢V [10). Lowdin population analysis was used to calculate the effective ion
charges; their modulus for silver and chlorine ions in the perfect lattice is 0.69 e
(e is the electron charge) in agreement with the experimental estimation 0.66-0.69 e
[21].

The lattice outside the cluster is constructed from non-point polarizable ions
carrying the same basis of AOs as ions inside the cluster. The Lowdin populations
of these A0s are frozen to those A0 populations of the perfect lattice. Only the
Coulomb and charge-dipole interactions between the cluster ions and remaining
crystal are included in the calculation of elements of the Fock matrix. The Coulomb
interaction between ions inside and outside the cluster is calculated explicitly as
between quantum-mechanical ions, although the angular dependence of the AOs
in the Coulomb integrals is neglected according to the INDO approximation. The
" potential of the lattice of non-point spherical ions is summed to infinity using the
Ewald method [19). .

To simulate the self-trapping of a hole the polarization of the remaining crystal,
not included in the quantum cluster, is accounted for in a self-consistent manner
[15,18]. The potential of the polarization ficld generated as a consequence of the
response of the polarizable lattice to the hole is incorporated directly into the Fock
matrix. It is recalculated after every few steps of the UHF self-consistency procedure
until the consistency is finally achieved.

3. Hole self-trapping in AgCl

In order to find a possible stable configuration of the hole we use the following
approach. First we suppose that the hole may be localized within the crystal
area which coincides with the molecular cluster. The largest cluster used in these
calculations is comprised of 48 ions [Ag,,Cl,,]. According to the experimental data
regarding the hole self-trapping in the crystals with close structure, like alkali halides,
cubic oxides or alkali earth fluorides and to the results of theoretical calculations
for these crystals [2,7,8,14,22], one can assume three plausible models for the self-
trapped hole in AgCl: the one-centre and Vy-like localization in the anion sublattice
and the one-centre localization in the cation sublattice,

First we simulated the Vi-like configuration of the hole using the molecular
cluster [Ag,,Cl,,]. By the symmetrical displacement of two central chiorine ions from
their sites towards each other it is possible to localize the hole predominantly on
these ions. To minimize the total energy of the system keeping the D,, symmetry
of the defect, it appears that at the energy minimum the hole is only slightly
localized on two displaced chlorines. In fact about 60% of the spin density is
localized on the two nearest Ag ions which are slightly displaced from their sites
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(see figure 1(a)). The analysis of this configuration has shown that this antibonding
state is located about 0.25 ¢V higher than the bonding state of the same symmetry
(see figure 1(b)). Hence in this model the hole prefers to localize in the state
determined by the silver atomic orbitals. The further minimization of the system’s
total energy without additional symmetry restrictions indicates that the two-centre
hole localization on silver ions is unstable and much lower energy corresponds to
the one-centre state depicted in figure 1(c). If we start from the state corresponding
to the localization of the hole upon one chlorine ion, which may be prepared by a
strong symmetrical displacement of the six nearest cations outwards, by minimizing
the total energy we end up with the same one-centre state localized on one silver
ion.
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_Figure 1. Molecular orbitals of the self-trapped hole: (a) the antibonding two-centre
hole state; (b) the bonding hole state at the same ionic displacements as (a), which is
analogous to the hole wavefunction in the Vg centre; () the ‘one-centre’ hole state on
the silver ion.

Further analysis of the one-centre hole configuration on the silver ion was
performed using the molecular cluster [Ag,;Cl,,I. It has revealed that about 67%
of the hole is localized on the d,,. ;. atomic orbital of the central silver ion. The
remaining 33% of the spin density of the hole is delocalized by the 3p, , orbitals of
the four chlorine ions located in the Ozy plane of the cluster. The displacements of
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the nearest ions surrounding the central silver ion are summarized in table 1. The
symmetry of the centre is in fact D,, because the four nearest anions in the Ozy
plane are attracted to the hole a bit more strongly than those located by the z-axis.
This is a consequence of the Jahn-Teller interaction of the hole with E, vibrations of
the nearest anions. The symmetry of the hole predicted by our calculation coincides
with that observed in the ESR experiment [12]. Therefore the one-centre state on the
silver ion may be considered as a good candidate for the model of the self-trapped
hole in AgCl. However, a more confident conclusion may be made only after a
calculation of the self-trapping energy.

Table 1. The displacements of two nearest-neighbour spheres of iohs of the self-trapped
hole in AgCl (in units of internuclear distance).

Displacements

lons Types

of siles z v z

Ag 1060 0.050 0.000 0.00¢
Ag 001 0.000 0.000 0.025
Cl 0.025 0025 0.000
Cl 0.015 0.000 0.025

—

L= ]
Ll ~=]

In order to calculate the localization energy of the hole on one silver ion et us
present its Hamiltonian in the tight-binding approximation

[ + _ +
Hh - ZEPGLP,«J aLPu Zedpaﬂd”aLd‘,
L,y L
=3 Y V(E-L', A 0)adyay,
L,L' Mo

= = = 2
&4,, = Ea,, = Eq,, = &4~ FA

€4, , =€, = -+ %A. (8)
Here u are different symmetry projections of 3p and 4d orbitals of chlorine and
silver, respectively; —e, and —e, are the energies of the hole localized on the
chlorine 3p orbitals or the siiver "4d orbitals; V' denotes the non- diagonal matrix
elements, where L and L' are the vectors of the direct lattice and A, o refer to all
the symmetry projections of chlorine 3p orbitals and silver 4d orbitals; A characterizes
the splitting of the silver 4d states in the crystalline field. According to the results
of our calculations, the wavefunction of the localized hole may be presented in the
form of the linear combination

lex) = ale? — o*) - (B/2)(la~) = le+) + ly+) = ly-)) ®

where the |22 ~ ?) denotes the d_._,. atomic orbital of the silver ion and the |1}
are the 3p orbitals of the chlorine ions in the Oxy plane, + refers to the relative
positions of the chlorine jons with respect to the central silver ion (sec figure 1(c)),
and @, 3 are the real coefficients, which are determined from the Hartree-Fock
calculation of the hole. According to our definition (7) we have to calculate the
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energy difference between the lowest delocalized state and the intermediate state
corresponding to the hole localized in the perfect lattice with the wavefunction (9).
The latter is equal to

Ey = (or|Hley)
= - azﬁd,;_,z — B e, + V([20,0,0,p.,p;)

+2V([~a,q,0],p,, Py)}
+ 408V ([a,0,—a),d,2_2,P,)- (10)

Two usual approximations were employed in order to calculate the energy of
the delocalized state. Firstly, in our calculations the band of free holes coincides
with the valence band taken with the opposite sign [23], i.e. the bottom of the
hole band corresponds to the top of the valence band. Secondly, we assume the
equivalence of magnitudes of the electronic polarization produced by the delocalized
and localized holes [24). Using these approximations, the matrix elements of the
hole Hamiltonian in both delocalized and intermediate states may be derived from
the matrix elements of the Fock operator in the site representation obtained at the
last iteration of the self-consistency procedure of the band structure calculation of
the perfect crystal. This calculation was performed using the LUC method and the
cell [Ag,,Cly,]. The localization energy calculated in this manner is equal to 0.8
eV. '

In order to find the relaxation energy, the total energy of the molecular cluster
simulating the perfect lattice was calculated for the electronic density distribution
corresponding to the hole wavefunction (9). Only the electronic part of the lattice
polarization by the hole has been taken into account since, in the intermediate state,
all ions are assumed to be in their sites. The value of E | is approximately equal to
the difference between this energy and the energy of the completely relaxed state. In
our calculation this value is equal to 0.9 eV. ,

According to (1) the self-trapping energy is equal 0.8-0.9 = —0.1 eV. The negative
value of the E, supports the conclusion that the hole in AgCl may be self-trapped
on one silver ion. The magnitude of the E is close to the experimentally obtained
activation energy of the thermo-activated ionization of the self-trapped hole in AgCl
which is equal to 0.12 eV [25].

4, Discussion

The results of these calculations agree with the experimental observation that the
hole in AgCl is localized on the silver ion. They also exclude the possibility of hole
localization in the chlorine sublattice in the bulk of the perfect crystal. The latter
result is not absolutely evident despite the fact that the top of the valence band
in AgCl is determined by the d states of silver ions. The estimation of the hole
(Vg centre) self-trapping energy in KCl [7] gives the value of —-1.7 eV which is
close to the splitting (1.9 eV) between L (silver-like) and I' (chlorine-like) points in
the valence band of AgCl. Therefore one could expect that hole self-trapping on
chlorines is due to a delicate balance of different contributions to the self-trapping
energy. However, the fact that the silver states have higher e¢nergy causes a hole
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density redistribution from the chlorine ions to silver. Consequently the chemical
bond between two chlorines sharing the hole does not form, whereas the lattice
polarization cannot prevent the hole transfer onto silver ions.

Finally we should note that the alternative estimate of the localization energy
could be made as a half-width of the silver subband in the valence band of AgCl. In
order to compare with the E , cbtained in our calculations we should get the value
of E,,. from the band structure calculation made by the same quantum-chemical
method. In our LUC calculations the width of the silver subband is found to be
equal to 2.1 eV. Therefore the value of E,, may be estimated as 1.05 eV. Thus
the £ obtained in this manner is 1.05-0.9 = 0.25 eV and hence, according to this
estimation, the holes cannot be self-trapped in AgCl. This paradoxical result supports
the conclusion made in previous calculations [7,8] that the real electronic structure
of the valence band has to be taken into account in the calculations of the hole
localization energy.
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